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Abstract. 

Molecules are treated as tensegrity structures and a molecular tensegrity is defined to 

obtain quantitative information on 1,3- distances in X-M-Y linkages. We apply these 

principles to A
…

H-B hydrogen bond complexes. In this approach a tensegrity factor is 

obtained from the ratio of ideal A
…

H or H-B distances to that of ideal A
…

B distances 

from sizes, CR0
±
, that are associated with positive and negative sizes of atoms and which 

are obtained as fixed functions of atomic size, rnZ
c
. Limiting values of various A

…
B 

distances for “n-polar” (ionic) and “neutral” sizes are obtained for coordination number, 

N = 4 or 6 without requiring a knowledge of the actual positions of the hydrogen atom. In 

this formulation the A
…

B distance decreases with increasing N. The calculated distances 

with N = 4 are closer to most observed A
…

B distances in A
…

H-B hydrogen complexes in 

(> 1000) compounds of biologically important amino acids. The shorter O
…

H-O and 

O
…

H-N hydrogen bonds are consistent with “n-polar” distances (N = 4). Others, 

including O
…

H-C or C
…

H-O are better characterized by the longer “neutral” distances. 

Very short hydrogen bonds (SSHBs or LBHBs) correspond to distances calculated with N 

= 6. The way the molecular tensegrity of the A
…

H-B hydrogen bond complexes impacts 

the length of A
…

H and H-B bonds are discussed.  



1. Introduction 
 

A tentative IUPAC definition [1, 2] for an A
…

H-B hydrogen bond complex is that there 

should be an attractive interaction between a B-H group in a molecule and an atom (or 

group of atoms) Y in the same or another molecule. An important descriptor in 

theoretical studies of hydrogen bonding has been the strength of the binding energy of the 

hydrogen bond complex. However, as emphasized by Buckingham et al [1], a wide range 

of interactions contribute to the binding energies so that one would require various 

qualifying descriptions of the hydrogen bond and terminologies such as the normal 

hydrogen bond between neutral molecules. The vibrational frequency of the B-H bond in 

the normal A
…

H-B complex is normally red-shifted [3] on the formation of the complex. 

The proton NMR chemical shift in normal hydrogen bond complex is downfield (usually 

< 5 ppm) which may be interpreted as having less electron density around the hydrogen 

on the formation of the complex. Exceptions to the normal hydrogen bond are thus those 

with blue-shifted B-H vibrations, or with very large downfield proton NMR chemical 

shifts besides those which are proton-shared [4]. Our interest in this submission is 

somewhat different. We intend characterizing hydrogen bond A
…

H-B complexes through 

the interatomic separations in the complex. Thus there could be normal and short or long 

interatomic distances.  

 

There is a fickle-ness in the literature in identifying the actual pair of atoms in the A
…

H-

B complex which are to be evaluated by their interatomic separations. It has been the 

conventional wisdom that the proton in the hydrogen bond is buried in the electron cloud 

of the B atom in an A
…

H-B linkage such that the hydrogen bond contacts are just the sum 

of van der Waals’ radii of A and B atoms. The van der Waals’ sizes, rvdW, of atoms have 

been used [3] to characterize hydrogen bond distances although tabulated values [3, 4] of 

these radii may differ considerably. The formation of a hydrogen bond is also usually 

indicated when the A
…

H distance is smaller than the sum of the van der Waals’ radii of 

the A and H atom. Such a shortening of the distance has been attributed [4] to the 

formation of three-centre four-electron bonds with considerable electron overlap between 

the orbitals of A, H and B atoms. Our approach will not consider consequences of 

variable electron overlap.  

 

Our focus will be mainly on the A
…

B distances. Of recent biological interest are the so-

called short strong hydrogen bonds (SSHBs) (5-7]. By its very name, the identification of 

SSHBs is based on the shorter A
…

B separations (by about 20-40 pm) as compared to the 

separations in the normal hydrogen bond. It is proposed that the transition state is 

stabilized because of the short A
…

B distance and that the barrier between two possible 

A
…

H-B or A-H
…

B hydrogen bonded complexes is lowered. The SSHBs are sometimes 

taken to be synonomous [5-7] with low-barrier hydrogen bonds (LBHBs), and are 

characterized by large downfield proton chemical shifts (typically 20 ppm). The large 

downfield proton NMR shift in SSHBs is taken as measure of increasing proton-like 

acidity of the hydrogen atom that would account for the short O
…

O distance in SSHBs as 

in proton-shared hydrogen bonds such as those in (O2H5)
+
 [O

…
O distance ~ 238 pm; see 

Ref 1]. However, theoretical calculations on binding energies and chemical shifts by Del 

Bene et al [4] on a number of hydrogen-bonded complexes reveal that proton-shared 



hydrogen bonds have NMR shifts of ~ 20 ppm without being dependent on the binding 

energy. 

 

The geometries of hydrogen-bonded A
…

H-B complexes in terms of 
1
H NMR parameters 

may be understood in terms of Pauling’s valence bond order or bond valences [8-12]. A 

recurring theme in A
…

H-B hydrogen bond complexes is that a decrease in bond order of 

the B-H bond on complex formation is accompanied by an increase in bond order of the 

A
…

H bond with the total bond order being unity. In chemical terms this implies that in 

the normal hydrogen bond complexes the covalence of the B-H bond decreases while that 

of the A
...
H “non-bond” increases as the A

…
B distance decreases. A measure of the 

“overlap of electron clouds” or “covalent” nature of a B-H bond is obtained from the 

spin-spin coupling between two atoms [13]. The theoretically evaluated reduced one-

bond B-H coupling constants, 
1
JB-H, for B-H monomers as well A

…
H-B hydrogen bond 

complexes show little correlation with B-H distances [14]. However, 
1
JB-H for different B 

in complexes with C-H, N-H, O-H, and FH have been related [14] for the first time 

through the normalized changes in 
1
JB-H and changes in B-H distance on complex 

formation from the monomeric state as well as the square of the Pauling electronegativity 

difference between the B and H atoms. 

 

The theoretically evaluated [14] two-bond spin-spin coupling constants, 
2h

JA---B across 

A
…

H-B hydrogen-bonded complexes (“2h” indicates that the coupling is across the two 

A
…

H and H-B bonds) show a single-curve correlation between 
2h

JA---B and the distance 

dA---B between the A and B atoms for N-H-N and C-H-N systems. Such a correlation 

holds even though the complexes could be neutral or charged implying different levels of 

hybridization in bonds involving the hydrogen atom. The seeming contradiction pointed 

out [14] in such a correlation is that 
2h

JN-N term would seem to be independent of the 

nature of the N-H hybridization although hybridization is considered to be important in 

accounting for changes in B-H distances. Although the hydrogen bond complex A
…

H-B 

implies changes due to the contact of hydrogen in the B-H bond with an atom A the 

nature of these contacts need not directly correlate with the A
…

B separation. This is an 

important aspect that we require considering.  

 

It is pertinent to note from a historical point of view, the first description of hydrogen 

bonding [15]
 
stressed the importance of the high dielectric constants of hydrogen bonded 

systems. This has been attributed to proton displacements from the centre of the atom. An 

important consequence of such atomic displacements in Latimer’s modelor as a 

consequence of asymmetric bonding effects in modern theoretical approachesis that the 

spherical atom approximation is no longer valid. This poses considerable difficulty [16] 

in locating the hydrogen atom from electron densities obtained from X-ray diffraction 

studies since the hydrogen has no core electron to identify it by. This ambiguity in 

locating the hydrogen atom is inevitable and unavoidable. In neutron diffraction studies 

the position of the nucleus is more accurately determined as the nuclear position may be 

accurately represented as a point-scatterer. On the other hand, since electron densities are 

to be related to chemical reactivity, one may be actually interested in the electron density 

profiles obtained by X-ray refinements. The discrepancies between X-ray and neutron 

diffraction results affect the way the non-bonded A
…

H distance is to be evaluated. The 



A
…

B distance is more reliably obtained experimentally and one requires a method for 

evaluating these distances without specifically requiring to know the A
…

H or B-H 

distances, at least to a first approximation. 

 

Buckingham et al [1] have considered the internuclear A
…

B distance as one of three 

experimentally measured quantity that requires reliable theoretical interpretation without 

necessarily accounting simultaneously for changes in distances involving the hydrogen 

atom in the complex. In this submission we examine the values of expected A
…

B 

distance in A
…

H-B hydrogen bond complexes from considerations of molecular 

tensegrity even if this theoretical model may be different from that conventionally used. 

The concept of molecular tensegrity has been used earlier [17-19] for obtaining 1,3- non-

bonded distance in X-M-X’ linkages in gas-phase MXn compounds. In this approach (see 

section 2.3), the ideal 1,3-X
…

X’ distances are obtained from a knowledge of “ideal” 

“charge-transfer” single-bond M-X distances, d
00±

, and a size, CR0
-
(X), of the X atom, 

which are themselves simple linear function [20] of atom-specific sizes [20-22], rnZ
c
. 

There is no requirement for knowing the actual M-X or M-X’ distances. We apply these 

concepts to the A
…

H-B hydrogen bonded complexes since we would not require accurate 

knowledge of A
…

H or B-H distances.  

 

We emphasize, in particular, the way the “ionic” (or “n-polar”) sizes [20, 21], CR
-
, and 

the “neutral” (or what is loosely identified with vdW size, rvdW) sizes may be used to 

obtain cut-off limits for the A
…

B distances in strong and weak hydrogen bonds in A
…

H-B 

complexes. We ignore other debates [2, 23-25] on the way the interatomic A
…

B van der 

Waals contact distances should be compared by taking into account the AHB bond angle. 

The van der Waals dispersion reaction interaction between atoms is a consequence 

mainly of the induced-dipole induced-dipole interactions between atoms. It is expected to 

be isotropic, to first order so that the magnitude of the A
…

B van der Waals interaction in 

the A
…

H-B hydrogen bond complex may have little dependence on the AHB angle.  

 

In what follows we describe first in sec 2 the way we obtain [20-22] atomic sizes and 

interatomic distances (details of which are given in the Appendix for those interested) 

and the concepts used for obtaining 1,3-distances in X-M-X’ linkages in a molecular 

tensegrity model [17-19]. In sec 3 we extend the molecular tensegrity model to calculate 

“1,3-“ A
…

B distances in A
…

H-B hydrogen bond complexes. In this calculation there is no 

requirement for knowing the actual A
…

H or H-B distances with a provision being made 

for the “polar” or “neutral” nature of the contacts and the number, N, of contacts the 

hydrogen atom has with other atoms outside the A
…

H-B complex. In sec 4 we compare 

the calculated distances with observed A
…

B distances for A
…

H-B compounds in general. 

In sec 5 we examine the short A
…

B distance in LBHBs in the context of hydrogen-

sharing between A and B atoms and increase in the nominal value of N, when there are 

furcated hydrogen bonds. In section 6 we consider briefly the A
…

H-B hydrogen bond 

complexes in which neither A nor B are O or N. In section 7 we illustrate the effect of 

electronegativity difference between A and B atoms in A
…

H-B and B
…

H-A hydrogen 

bond complexes with special emphasis on C
…

H-O hydrogen bonds and O
…

H-C hydrogen 

bonds.  Finally in sec 8 we show the linear dependence of A
…

H distance and the A
…

B 



distance and a hint of a possible exponential decay of the H-B distance with increase in 

A
…

H distance. 

 

2. Atomic Sizes, Interatomic Distances and Molecular Tensegrity 

 
2.1. Atomic Sizes.  

The atomic sizes, rnZ
c
, used by us have been obtained from a classical stationary point in 

a new model [20-22] and without adjustable parameters. The basic premise of this model 

is that atomic sizes are defined by external interaction which is represented by the 

absorption or emission of a photonor a virtual photon in vacuumwhich, in turn, is 

represented by an electron-hole pair, (e
-
-h

+
). The atomic size is obtained [20-22] by 

considering the interaction of the outer-electrons with the hole, h
+
, of the electron-hole 

pair that represents the external interaction. Because h
+
 is a universal component of the 

external interaction field, (e
—

h
+
), the atomic size thus obtained is not dependent on the 

actual nature of the external interaction. It is, however, atom-specific, because it is 

dependent on the way the outer electrons are distributed, say, between the valence and 

inner shells, as well as the way the d- and f- electrons of transition metal elements are 

treated. This is the new paradigm shift in which an external field is used to define an 

atomic size instead of calculating the size of an isolated atom internally. Some of the 

sizes of atoms that we will be using in this submission are given in Table 1 (note that the 

sizes are in atomic units).  

 

For a given bonding or non-bonding interaction the interatomic distance is given [20] as 

the sum of a size, CR, which is a linear function of the size rnZ
c
of the atom involved with  

CR = CrnZ
c
 + D                                                                                                    (1) 

The coefficient C in eqn 1 is atom-independent coefficient for the given interatomic 

interaction and the constant D is the size of the hydrogen atom for the given interaction. 

 

2.2. 1,2-Interatomic Bonded Distances. 

A general expression [20] for interatomic distances, dM-X, for an M-X bond is written (for 

convenience), in terms of a “hub” and “axle” description with 

dMX(cal)  = εeff[{CMrnZ
c
(M)/FS(M) + CXrnZ

c
(X)/FS(X)}”hub”  

                                          + {DM/FS(M) + DX/FS(X)}“axle”]                                (2) 

The term FS takes [26, 27] into account the shortening of bond distances due to the 

presence of nv “unsaturated” (or what we henceforth term as “extrabonding”) electrons. 

FS is empirically found [26, 27] to be FS = 1.18, 1.26, 1.32, 1.38 and 1.42 for nv = 1, 2, 3, 

4 and 5, respectively. Writing nv in terms of a spin Sv (= nv/2) valence electrons that 

contribute [28] to bond order (= nv + 1) we write FS  ≈ [1 + (2/π)
2
{Sv(Sv+1)}

1/3
. For  

this article we will require FS = 1. The values of the coefficients CM,X or DM,X for the 

“hub” and “axle” sizes for M and X atoms usually correspond to either “charge-transfer” 

values (see appendix; X is taken to be the more electronegative atom) or “neutral” values 

(C = 1, 2, …, D = 1, 2 …). The “charge-transfer” values are observed for gas-phase 

compounds in which M and X are both atoms of insulating elements or in solids [20].  

 

In what follows we will require an “ideal” (εeff = 1 in eqn 2) “single bond” (FS = 1 in eqn 

2) “charge-transfer” distance, d
00±

, for the non-transition metal elements we study in this 



paper. This “ideal” M-X (rnZ
c
(M) ≥ rnZ

c
(X)) charge-transfer distance is a single-bond 

distance for εeff = 1 and is given by  

dMX
00±

 ≡ CR0
+
(M) + CR0

-
(X)                                                                                (3a) 

with 

CR0
±
 ≡ C0

±
rnZ

c
 + D0

± 
                                                                                    (3b) 

with C0
+ 

= 2.144, C0
-
 = 2.30, D0

+
 = -2aH/3 and D0

-
 = 2aH (see appendix for a possible 

derivation of for the values of C0
±
 in eqns A4 and A5). We thus obtain the “ideal” 

distance as 

dMX
00±

 ≡ 2.144rnZ
c
(M) + 2.30rnZ

c
(X) + 4aH/3                                                        (4)  

The zeros in the superscript or subscript indicates that there are no “extrabonding” 

valence electrons or nv(M) = nv(X) = 0 or FS(M) = FS(X) = 1 in eqn 2 as expected for 

single bonds. 

 

2.3. Molecular Tensegrity and 1,3-Distances.  

For an X-M-X linkage, we have used [17-19] “tensegrity factor”, t
00±

, as a measure of the 

matching of idealized “charge-transfer” M-X (eqn 3) and X- - -X distances. The“ideal” 

charge-transfer separation, dXX
00=

,
 
between the X atoms in the X-M-X linkage is obtained 

from eqn 2b as 

dXX
00=

 = 2CR0
-
(X) = 2(2.300rnZ

c
(X) + 2aH)                                                          (5) 

From these considerations, the tensegrity factor, tMX
00±

 is obtained as 

tMX 
00± 

= dMX
00± 

/dXX
00=

 ≈ 0.5[CR0
+
(M)/CR0

-
(X) + 1]                                            (6) 

In the way eqns 1 – 5 are written, t00
±
 is dependent only on the core atomic size, rnZ

c
, of 

M and X atoms without requiring separate estimates of ionic character, for example.  

  

One appealing feature of eqn 6 is that the tensegrity factor, t
00±

, is dependent on the ratio 

R
±
 = CR0

+
(M)/CR0

-
(X), which is the radius ratio of the charge-transfer sizes of M and X 

atoms. It is well known that there are geometrical limits to the value of R
±
 for various 

coorination numbers, N. One can then expect the tensegrity factor to depend on the 

coordination number, N. One then obtains limiting values, t
00±

lim→N for limiting values of 

the ratio R
±
 [19-23] for the regular octahedron and the tetrahedron which, other than the 

icosahedron, are the fundamental polyhedra for describing tensegrity structures [29]. For 

example, for N = 4 (tetrahedron) and N = 6 (octahedron) the upper limiting values of R
±
 

are 0.414 and 0.732, respectively.   Thus, t
00±

lim→N = 0.707 and 0.866 for N = 4 and 6, 

respectively.  

 

The changes in the X
…

Y distance in X-M-Y linkages is given by a coordination-number-

dependent or N-dependent term FS
*N

 in the molecular tensegrity approach. This term, 

given by 

FS
*N 

 = [2 – t
00±

/t
00±

lim→N]                                                                                     (7) 

is now introduced as a measure of the matching of the 1,2- M-X and the 1,3- X
…

X 

distances with FS
*N

 = 1 when t
00±

/t
00±

lim→N  = 1. The N-dependence comes through the 

term t
00±

lim→N in eqn 7. The X
...
X distance for gas-phase MXn compound may be written 

in terms of a size CR(X) as 

dX---X 
1,3

 = 2CR(X)
1,3

/FS
*N

                                                                                    (8a) 

             =  2KεXX[2.3rnZ
c
(X) + 2aH]/ [2 – t

00±
/t

00±
lim→N]                                      (8b) 



It is seen from eqns 7 and 8 that when FS
*N

 > 1 there is a contractive pressure on the 1,3- 

X
…

X distance tending to compress it from its ideal value, 2CR0
-
(X) or dXX

00=
 (eqn 5). 

When FS
*N

 < 1 the 1,3-distance would tend to expand over 2CR0
-
(X). The size CR(X) = 

KεXXCR0
-
(X).  K = 1 or K = 1.125 in eqns 8 correspond [21’] to “n-polar” (or “ionic”) 

and “neutral” (or van der Waals) sizes of the X atom, respectively. The term, εXX, is an 

effective dielectric constant which allows for small changes due to environmental 

influences in a manner consistent with the size of the atom. For the purpose of this 

communication we use the empirical relationship  

εXX = 1+ [0.0019{2(2.3rnZ
c
 + 2aH)}]

6
                                                                  (9) 

 

 
Fig 1. Plots of observed X

…
X distances (from ref 21) in gas-phase MXn compounds (X 

and M are atoms of insulating elements) vs calculated distances from eqns 6-8 and atomic 

sizes from Table 1. Circles: n ≤ 4, N  = 4, K = 1; Squares: N = 6, MF6 compounds (M = 

S, K = Kpolar = 1; M = Se, K = (Kpolar + Kneutral)/2 = 1.0625; M = Te, K = Kneutral = 1.125).  

 

For an X-M-Y linkage the X
…

Y distance has been found to be given by 

dX---X’ 
1,3

 = {CR(X) + CR(Y)} /FS
*N

                                                                     (10a) 

             =  KXεXX{2.3rnZ
c
(X) + 2aH}/{2 – tMX

00±
/tMX

00±
lim→N}         +   

                 KYεYY{2.3rnZ
c
(Y) + 2aH}/{2 – tMY

00±
/tMY

00±
lim→N}                             (10b) 

The provision is made that KX need not be the same as KY and could have as before K = 

Kpolar  = 1.00 or K = Kneutral = 1.125 for “n-polar” or “neutral” distances. 

 

For gas-phase MXn compounds (n ≤ 4) where M and X are atoms of insulating elements 

(except SiH4, GeH4 and KrF2 and XeF2) we find [22] that K = 1 and N = 4, gives the 1,3-

X
…

X distances satisfactorily as shown in Fig 1. For MX6 compounds (n = 6) the 

calculated values are too large when we use N = 4 in eqns 7 and 8, even with K = 1 = εXX.  

Good fits are obtained only when we use N = 6 and allow for variations in K (see fig 1 for 



MF6 compounds; M = S, Se, Te). This highlights the way an increase in coordination 

number could lead to a decrease in the 1,3- distances. We shall use this aspect for 

understanding short hydrogen bond lengths [5-7] in LBHBs (or SSHBs).  

 

3. Calculated A
…

B Distances in Hydrogen-Bonded AHB Hydrogen Bond 
Complexes. 

 
Fig 2. Histograms of number of A

…
H distances normalized by the sum {= 1.125(CR0

-
(A) 

+ 4aH )} of the “neutral” (identified with vdW) sizes of A and H atoms for the 

compounds studied in this investigation. 

 

A point of detailed interest in this communication is to examine the A
…

B distance as a 

1,3-distance in a A
…

H-B hydrogen bond complex in terms of the molecular tensegrity 

model borrowed from Buckminster Fuller’s analysis of engineering tensile  integrity 

structures. For the purpose of this communication we have chosen hydrogen bond 

complexes in compounds of biologically important α-amino acids. We have chosen all 

A
…

H-B complexes in which the A
…

H distance is less than the sum of their “neutral” 

sizes CR(X) = KCR0
-
(X) distances with K = 1.125. We have normalized the reported 

A
…

H distances, dA---H by dividing by of the sum of the “neutral” (K = 1.125) sizes of A 

and H atoms.  The histograms of the ratio A---H obtained from the dA---H distances obtained 

from CCDC tables for O
…

H-O, O
…

H-N and other A
…

H-B complexes used in this study 

are shown in Fig 2. It is seen that in all these systems the A
…

H distances are less than the 

sum of their “neutral” sizes. 

 



We treat the A
…

H-B complex as similar to the X-M-Y linkage and apply equations 

similar to those in eqn 9. The “ideal” non-bonded A
…

H distance in the “charge-transfer” 

model are taken as the sum of the “n-polar” sizes of A and H atoms. We then write (in 

pm)  

dA- - -H
00=

 = CR0
-
(A)  + CR0

-
(H) ≡ CR0

-
(A)  + D0

-
(H)                                          (11) 

               = (2.30rnZ
c
 + 2aH)  + 2aH                                                                     (12) 

 

The tensegrity factor, t
00=

, for the A
…

H component is then that of a hypothetical A
…

H
…

A 

linkage. The = sign in the superscript of eqn 11 indicates that the ideal A
…

H distance is 

the sum of “n-polar” sizes of the A and H atoms. The value of tA---H 
00=

 is written as 

tA- - -H
00=

 =   dA- - -H
00=

/2CR0
-
(A)                                                                          (13)  

The tensegrity factor tH-B
00±

 is obtained in the usual way from eqn 5 as 

tH-B
00±

 = dB-H
00±

/2CR0
-
(B)                                                                                   (14a) 

       = (2. 144rnZ
c
(B) + 70.6)/(2.3rnZ

c
(B) + 105.8) (in pm)                                (14b) 

The A
…

B distance is then obtained in a manner similar to that from eqn 9 as 

dA---B  =  KAεAA{2.3rnZ
c
(A) + 105.8}/{2 – tA---H

00=
/tA---H

00=
lim→N}         +   

                 KBεBB{2.3rnZ
c
(B) + 2aH}/{2 – tB-H

00±
/tB-H

00±
lim→N}                           (15) 

The A
…

B distance for an A
…

H-B hydrogen bond complex can then be calculated (see 

Table 2) from eqn 15 using the atomic sizes, rnZ
c
 some of which are given in Table 1, for 

a given value of K and values of εXX from eqn 9.  

 

The F
…

F distance in (HF)2 of ~ 279 pm (see ref 1) agrees with the “normal” (N = 4, K = 

1) distance of ~ 281 pm when εFF is calculated from eqn 15. The O
…

O distance of ~ 298 

pm (see ref 1) in water dimer, (H2O)2, is close to the calculated distance (~ 303 pm, εOO 

calculated from eqn 15) using N  = 4 and average of K = 1 and K = 1.125. The O
…

O 

distance of ~238 pm in the (H5O2)
+
 complex is closer to the calculated K = 1, N = 6 value 

of ~ 236 pm. However, as we shall see later this distance may as well be related to 

aspects associated with LBHBs (see sec 5, Fig 8). (H5O2)
+
 has been described (see ref 1) 

as a proton-shared complex with the O—H distance of ~ 119 pm being considerably 

longer than the distance (97 ± 1 pm) in H2O or (H3O)
+
.  

 

We may calculate the tensegrity factor for a hydrogen-atom-shared hydrogen bond 

complex which we write as A
…

H
…

B hydrogen bond complex. Such complexes would be 

typical of LBHBs with the bond order of the A
…

H and B
…

H bond being 0.5 [7, 10] In 

this case the ideal values of  the A
…

H distance, dAH
<av>

, is the average of dA---H
00=

 (eqn 

12) and dA-H
00±

 obtained from eqn 4. Thus, we may write 

dAH
,< av>

 =   [{(2.30rnZ
c
 + 2aH)  + 2aH }+ {2.144rnZ

c
(A) + 4aH/3}]/2                (16a) 

with 

tAH
<av>

= dAH
<av>

/2CR0
-
(A)                                                                                  (16b) 

We may similarly write eqns for dBH
<av>

 and tBH
<av> 

 for the B
…

H bond from eqns 16. 

From considerations similar to that in eqn (15) we then obtain the A
…

B distance, dA---

B
<av>

, in a proton-shared A
…

H
…

B complex as 

dA---B
<av>

  =  KAεAA{2.3rnZ
c
(A) + 105.8}/{2 – tAH

<av>
/tA---H

,00±
lim→N}         +   

                 KBεBB{2.3rnZ
c
(B) + 2aH}/{2 – tBH

<av>
/tB-H

00±
lim→N}                         (17) 

 



In the general case when the hydrogen atom is not equally shared between A and B atoms 

we may write eqn 16a as  

dAH
,< av>

 =   [(p){(2.30rnZ
c
(A) + 2aH)  + 2aH }+ (1- p){2.144rnZ

c
(A) + 4aH/3}] (16c) 

and 

dBH
,< av>

 =   [(1-q){(2.30rnZ
c
(B) + 2aH)  + 2aH }+ q{2.144rnZ

c
(B) + 4aH/3}]     (16d) 

The A
…

B distances may then be calculated from eqn 17 using eqns 16b and its 

equivalents. In neutral complexes the condition p = q is required. In normal A
…

H-B 

hydrogen bond complexes p = q = 1. In hydrogen shared complexes the A
…

B distance 

goes through a minimum when p = q = 0.5 as in eqn 16a. When p < q, the calculated 

A
…

B distance is expected to be smaller than the case when p = q = 0.5. The O
…

O 

distance of ~ 238 pm in (H5O2)
+
 is obtained, for example, when p ~ 0.65 and q ~ 1. 

Howeever, the total bond order of the AHB complex in this case is greater than unity 

with hydrogen having valence greater than unity. This situation is not uncommon in 

metal hydrides, although it is yet to find acceptance in the study of hydrogen bond 

complexes. It could give a new insight into A
…

B distances even if it requires more 

substantiation from experiments (see sec 5). 

 

We have compared in Table 2, the calculated A
…

B distances for various values of K and 

N from eqn 11-14 with εXX calculated from eqn 15. For small atomic sizes (e.g., F, O, N) 

the A
…

B distance calculated from the tensegrity model with N = 4 and K = 1 is close to 

the sum (ΣX = A,BCR0
-
(X)) of the “n-polar” sizes of the A and B atoms (see Table 1) rather  

than the sum of the “neutral or vdW sizes that was assumed early by Buckingham and 

coworkers [2].  The calculated N = 4, K = 1 distances of O
…

F, N
…

F, C
…

F and C
…

C are to 

be comparable with the distances of 266, 280, 305 and  367 pm, respectively, used by 

Buckingham and Fowler in their classic paper [2] for the A
…

B distances in normal 

hydrogen bond A
…

H-B hydrogen complexes. From the way eqns 11-15 are written one 

does not expect much change in the calculated distances (without changes in K or N) 

when A and B are interchanged. The actual changes are within 1% in most cases studied 

and within 2% for the larger changes.  

 

The point of importance in the molecular tensegrity model is that for a given value of K 

(K = 1, “n-polar”;  K = 1.125, “neutral”) the  A
…

B distance may be shortened on going 

from N = 4 to N = 6, or by forming a “hydrogen-atom-shared” A
…

H
…

B complex.  The 

shortening of the A
…

B distance for a given N (by nearly 25 pm for N = 4) for a proton-

shared A
…

H
…

B is particularly satisfying as it is (at least partly) consistent with observed 

NMR downfield shifts. Such a shortening is possible in the molecular tensegrity model 

when there is hydrogen sharing between the A and B atoms. The shortening is a 

maximum when the hydrogen atom is equally shared between the A and B atoms.  

 

The dependence on coordination number, N, could be important from the point of view of 

the acidity of the hydrogen atom in the A
…

H-B complex. As a general rule, the strongest 

influence on acidity of a proton bound to an anion depends [30] on the anion stability. 

Among the factors contributing to anionic stability are resonance effects, hybridization 

effects and electronegativity effects. From an orbital-based analysis of Pauling’s bond 

valence rules, Burdett and McLarnan [9] have suggested that when there are two anionic 

species a more electronegative anion should occupy a site with a lower coordination 



number. As a corollary, changes in coordination number can change the electronegative 

nature of, say, an anionic species. Thus a change in coordination number from N = 4 to N 

= 6 would affect the acidity of the proton. Cleland et al [7] on discussing the acylation of 

chymotrypsin have stressed upon the role of active site being compressed on binding to a 

specific substrate so as to bring His-57 and Asp-102 close together and enabling the 

formation of HBLBs. As we shall see below an increase in coordination number would 

lead to a decrease in the A
…

B distance. In what follows we shall evaluate the 

experimentally observed distances with those calculated in eqns 11-17. 

 

4. Comparison of Observed and Calculated Distances. 

 

4.1. A
…

H-B compounds in General.  

 

 

Fig 3. Histograms of the ratio RA---B (= dA---B(ob)/d A---B( cal) of observed A
…

B distance in 

crystals of various compounds of amino acids as compiled in the literature and the 

calculated A
…

B distance using eqn 14 with K = 1 and rnZ
c
 taken from Table 1. The 

vertical lines indicate the values calculated for the given values of K with the value of N 

given in brackets. The meaning of <4,6> is that it is the arithmetic average of values 



expected for N  = 4 and N = 6. Very short A
…

B distances corresponding to N = 6 are not 

seen in these examples. 

 

The calculated distances have been compared with those observed in compounds of 

biologically important amino acids by normalizing the observed A
…

B distances with that 

calculated from eqn 14 with N  = 4 and K = 1 and εAA or εBB calculated from eqn 15. The 

resulting ratio of observed and calculated distances is termed as RA---B. We show in Fig 3 

the histograms of the values of RA---B of the distances observed using as a upper cut-off 

the distances given as the sum of van der Waals sizes in the CCDC tables.  We see that 

there are two maxima around R = 1 and R = 1.125. The larger contributions may be 

attributed to “n-polar” (K = 1) sizes while the value of RA---B for the other maximum is 

close to that are to be attributed to “neutral” or vdW (K = 1.125) sizes. There are no A
…

B 

distances which are close to that expected for K = 1 and N = 6 although there are a few 

with A
…

B distances that are close to that expected when an average value, <K> = (1 

+1.125)/2 = 1.0625 (designated by N = <4, 6> in Fig 3). As we shall see below The AHB 

hydrogen bond complexes with RA---B < 1 are mainly those from the O
…

N and O
…

O 

distances.  

When N = 6 and K = 1 in eqn 14 RA---B ~ 0.82. For the O---O linkage the expected 

distance is nearly 236 pm (Table 2). A very short separation between carboxylate 

oxygens of only 230 pm has been claimed [31] for the active site of HIV-1 protease (PR). 

Usually a  A
…

B distance of ~ 280 pm in O
…

H-O or O
…

H-N complexes is an indication  

(K =1, N =14 in Table 2) of a normal hydrogen bond distance. These are usually 

associated with an enthalpy of formation which is close to -5 kcal/mol.  Such hydrogen 

bonds are asymmetric as far as the location of the proton between the H and B atoms are 

concerned. Asymmetric proton locations persist even when O
…

O distances are as small 

as 250-260 pm 

4.2. OHN hydrogen Bond Complexes.  



 
Fig 4. Histograms of O

…
N distances in nominally O

…
H-N hydrogen bond complexes of 

compounds of naturally occurring amino acids. 

 

The O
…

H-N hydrogen bond complexes are expected to be the most common in salts of 

biologically important amino acids that we focus on in this submission. The histogram of 

the O
…

N distances in these hydrogen bond complexes are shown in Fig 4. Markers are 

also shown in the figure showing the expected distances for calculated values from eqns 

11-14 with various values of N and K and with εXX calculated from eqn 15. It is seen 

from Fig 4 that the nominally O
…

H-N hydrogen bond complexes have O
…

N distances are 

peaked around that expected for the “normal” (N = 4, K = 1) O
…

N distance.  

 



 
Fig 5. Contact geometry in nominally O

…
H-N hydrogen bond complexes. (a) N-[2-(4-

amino-2-oxo-1,2-dihydropyrimidin-1-yl)propionyl]-1-phenylalanine [32/53’]; (b) L-

Histidylglycine Hydrochloride [33]; (c) 1:1 complex of D- and L-norleucine [34]; (d) 

cyclo-Glycyl-L-phenylglycine [35]. 

 

There is a shortening of the O
…

N distances, when the hydrogen atom in O
…

H-N 

hydrogen bond complexes  are in contact with other atoms outside the complex and have 

contact distances less than that expected from the sum of their “neutral” (or vdW) sizes. 

These contacts are shown by dotted lines in Fig 5. As the number of such contacts with 

the hydrogen atom in the hydrogen bond complex increases the O
…

N decreases as is seen 

from an examination of Figs 5d-5b. There is no systematic change discernible in the N-H 

distances.  The shortening of the O
…

N in figs 5b-5d may therefore be attributed to 

increase in the coordination number, N.  The shortest O
…

N distance is seen (Fig 5a) in an 

intermolecular contacts between an O of the carboxylate group and NH group of the 

dihydropyrimidin group of N-[2-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)propionyl]-

1-phenylalanine [32]. In this contact the hydrogen-bonded hydrogen atom (H3B) has only 

one additional contact (with C18C, see fig 5a) with a C
…

H distance of ~ 257 pm which is 

close to the sum (257 pm) of the “n-polar” size of C and H atoms (Table 1). The 

shortened O
…

N distance in Fig 5a would not seem to be due to an increase in the 

coordination number, N, for the H.atom. At the same time the O(18C) and N(3B) atoms 

in the shorter O
…

N  hydrogen bond of fig 5a are in shorter (less than vdW contacts) with 

other atoms in other molecules. This could result in a compressive pressure on the 

hydrogen bond complex and is reminiscent of that proposed by Cleland et al [7/17] for 

the formation of LBHBs during acylation of chymotrypsin. 

 

5. More on Short Hydrogen Bonds and LBHBs. 

 



The hydrogen bond between homo-nuclear atoms is especially interesting. One may 

consider the equilibrium between two hydrogen-bonded states such as  

Oa
…

H-Ob              Oa-H
…

Ob                                                                             (18) 

The initial and final states may be considered to be degenerate as long as the 

environments of the two oxygen atoms, Oa and Ob, are identical. In chemical terms this 

would translate into the two oxygen atoms having pKa values close to each other. The 

important feature of eqn 18 is that the initial state is degenerate with the final state once 

there is no change in the nuclear position of the oxygen atoms relative to that of the 

hydrogen atom after the exchange. In this case there could be low-barrier “itinerant” 

hydrogen bonds with exchange of the H atoms between Oa and Ob atoms. The proton 

could be itinerant between the two structures in eqn 18 depending on the extent of  pKa 

matching. The tensegrity factor would then depend on the extent of sharing of the 

hydrogen atoms between the two oxygen atoms. The shortening of the O
…

O distance 

would then be governed by eqns 16a-16d and 17.  

 
Fig 6. Histogram of O

…
O distance in OHO hydrogen complexes. Markers give expected 

values of the O
…

O separation (see Table 2)  for various coorination numbers, N, for “n-

polar” sizes without hydrogen sharing (indicated by ±) and for equal hydrogen sharing 

(indicated by <av>). 

 

We have shown in Fig 6 the histogram of O
…

O distance of some representative 

compounds of α- amino acids. It is seen that, unlike the O
…

N distance in Fig 4, the 



maximum in the histogram occurs at a O
…

O distance that is considerably less than that 

calculated from eqns 11-15 with N = 4 and K = 1. This must be attributed to hydrogen 

sharing between the two oxygen atoms. There is a maximum around values expected for 

equal sharing (eqn 16a) of the hydrogen atom although there could be some influence due 

to an increase in N. 

 

In order to further examine the reasons behind the shortening of the O
…

O distance we 

examine in Fig 7 some cases chosen at random with different O
…

O distances. Among the 

compounds studied here, the shortest O
…

O distance (~ 244 pm) is found in L-

phenylalanine nitrate [36]. The number of contacts with the hydrogen atom (HD2A) in 

the hydrogen bond complex is quite large. The nominally “non-bonded” O
…

H distance is 

only 148 pm while the nominally bonded O-H distance is elongated to ~ 100 pm which is 

the longest O-H distance of the example shown in Fig 7. A similar shortening of the O
…

O 

distance is found in the the charged bis(L-proline)H
+
 nitrate [40] in which the O

…
H 

distance is only 140 pm and the O-H distance is nearly 110 pm. The short O
…

O distance 

of ~242±2 pm in these compounds is therefore a combination of increase in number of 

close contacts which could be attributed to an increase in N as well as due to hydrogen 

atom sharing between the A and B atoms.   As the coordination around H decreases on 

going from Fig 7a to Fig 7c, the O
…

O distance increases accompanied by a decrease in 

hydrogen atom sharing (an increase in the nominally O
…

H distance and a shortening of 

the O-H distance). We have also shown in Fig 7d hydrogen bonding in tricine 

[tris(hydroxymethyl)methyl]glycine [39] in which there are two OHO hydrogen bond 

complexes with similar coordination numbers and with O
…

O distances (269 ± 3 pm) 

which are slightly shorter than the calculated distance from eqns 11-15 (N = 4, K = 1) of 

~ 286 pm. The OHO complex with the longer O
…

O distance also has the longer O
…

H 

distance.  The extent of hydrogen sharing seems therefore to determine the O
…

O 

distance. 
 



 
 

Fig 7. Contact geometry in nominally O
…

H-O hydrogen bond complexes. (a) L-

phenylalanine nitrate [36]; (b) N-(Carboxymethyl)aspartic acid [37]; (c) Intermolecular 

hydrogen bonding of N-3,5-dinitrobenzoyl-L-leucine [38]; (d) N-

[tris(hydroxymethyl)methyl]glycine (tricine) [39] 

 

The critical feature of importance is the degeneracy of the initial and final states in eqn 

18. This feature was first recognized as important in Zener double exchange [41] 

systems, as visualized in the manganites [42], for example. In mixed valence, M
m+

-M
(m-

1)+
 systems (m is the number of valence d electrons, say) the equivalent electron transfer 

reaction has been written as 

Ma
m+

-Mb
(m-1)+

  ↔ Ma
 (m-1)+…

(e)
-…

 Mb
 (m-1)+

  ↔ Ma
 (m-1)+

-Mb
 (m)+

                      (19a) 

When the initial state is degenerate with the final state in eqn 19a, the energetically 

uppermost valence electron is itinerant between the atoms Ma and Mb. The individual 

valence states of the M atoms are not distinguishable (homogeneous mixed valence) 

when the measurement time is less than hopping frequency. In Zener double exchange 

systems, the spin of the electron plays an important role is plays an important part in 

introducing ferromagnetic coupling between M atoms when m > 1 as in the perovskite 

manganites [42]. This is because the electron-spin requires to be conserved during the 

exchange process as in eqn 19b below (m = 4; e.g., Mn
3+

-Mn
4+

 in manganites). 

Ma
↑↑↑↑

-Mb
↑↑↑

 ↔ Ma
↑↑↑…

(e
-↑

)-Mb
↑↑↑

 ↔ Ma
↑↑↑

-Mb
↑↑↑↑

                                (19b) 

In very short hydrogen bonds (such as SSHBs or LBHBs) we may similarly distinguish 

between “homogeneous” and “heterogeneous” hydrogen bonds. In LBHBs a low barrier 

could presumably be associated with a “homogeneous” hydrogen bond in which the 

proton oscillates between the A and B atoms in a flat potential well as argued by Cleland 

et al [7].  

 



Such spin- (or direction) conserving constraints for barrierless reactions are also present 

for energy transfer reactions in pigments. Förster’s expression [43] for the energy transfer 

rate from donor to acceptor is dependent on the transition dipole moments of the donor 

and acceptor states. When the environments of the M atoms are differentsay, with 

different coordination numbers or with different orientation of the O-H dipolethe M 

atoms in different valence states may become distinguishable (heterogenous mixed 

valence). Taking this analogy between electron-transfer and proton-transfer reactions 

further it would seem that linear O
…

H-O intermolecular hydrogen bond complexes or 

intramolecular O
…

H-O complexes in which the oxygen positions are fixed are more 

suitable for low-barrier processes.  

 

In real molecules of biological importance the framework of the constituent atoms of the 

molecule could act as scaffolding that forces the A and B atoms in the AHB hydrogen 

bond complex to take up fixed positions and favour a low-barrier H exchange. The actual 

shortness of the hydrogen bond does not seem to be an important constraint or even an 

indicator for low barriers. It is possible that a large value of N around the hydrogen bond 

complex in the biological molecules reduces the O
…

O distance without necessarily 

correlating it to low barriers. In catalytic aspartases the active sites involving inner 

carboxylate oxygen atoms have hydrogen bond lengths between 260-287 pm. Warshel 

and Papazyan [44]
 
suggested from energy considerations that low-barrier hydrogen bonds 

need not offer a catalytic advantage over ordinary hydrogen bonds. 

 

In O
…

H-N bonds (prevalent in biological systems) the hydrogen atom is chemically 

bound to the less electronegative nitrogen atom so that the barrier to the H-O
…

N state 

from the O
…

H-N state may be less than the barrier to the O
…

H-N state from the O-H
…

N 

state. This makes the O-H
…

N hydrogen bond less likely to be a low-barrier hydrogen 

bond than the usual O
…

H-N bond. Steiner et al [45] have shown from neutron 

diffractions studies on adducts of 2-methylpyridine and pentachlorophenol with O
…

N 

distance being 258.8 pm the hydrogen atom position is sharply defined. The observed 

neutron O-H distance of 107 pm is among the longest O-H distance in nominally N
…

H-O 

hydrogen bond complexes that have been studied  by neutron diffraction. One may 

therefore expect some contribution from hydrogen sharing. The hydrogen atom has short 

(less than vdW contact distances) contacts with a methyl hydrogen (dH---H ~ 233 pm) and 

with an ortho- chlorine atom (dH---Cl ~ 273 pm) so that the coordination around the H 

atom is effectively increased.  Such increased coordination may also cause a shortening 

of the O
…

N distance. 

 



 
Fig 8. Changes in O

…
O distances in O

…
H-O hydrogen bond complexes as a function of 

the variation of some external parameter, x. Thick full line labeled as LBHB: From eqns 

16c and 16d with p = q and N = 4 in eqns 11-15. Dotted line. Value of N changed for 

Oa
…

H linkage from 4 to 6 and N = 4 for H-O linkage. Dots and dashes: From eqns 16c 

and 16d with p = q and N = 6 for Oa
…

H and N = 4 for H
…

O linkage in eqns 11-15. 

 

We have shown in Fig 8 the way O
…

O distance changes when the bonding with the 

hydrogen atom is shared between the donor and acceptor hydrogen atoms as in LBHB 

systems. When N = 4, the effect of changing p (= q) in eqns 16c and 16d results in the 

shortest O
…

O distance being at x  = 0.5 with the shortest O
…

O distance being ~ 250 pm 

when x  = 0.50. When N = 6 for one O
…

H linkage and N = 4 for the other in hydrogen-

atom-shared LBHB systems the O
…

O distance is close to 232 pm for 0.5 < x < 0.7 when 

x is the concentration of the O
…

H linkage with N = 4. Changes in the value of N from 4 

to 6 for the non-bonded O
…

H linkage (without sharing of hydrogen atoms), for example, 

causes  a monotonous decrease from ~ 280 pm to ~ 240 pm. Thus an increase in N and/or 

the introduction of hydrogen sharing between A and B atoms as in LBHB systems seem 

to be necessary for obtaining short O
…

O distances close to 240 pm. Whether such 

conditions are satisfied while accounting for the short O
…

O distance in of ~ 239 pm in 

(H5O2)
+
 with a symmetric O

…
H

…
O bond would require further examination. Unlike 

discrete molecules or many inorganic solids the actual coordination geometry is not 

regular in the hydrogen bond complexes of biological systems studied here. This irregular 

coordination varies from one hydrogen-bond complex to another such that changes in N 

may be expected to quasi continuous 



 

The role of LBHBs in other reactions could possibly have more potential than has been 

realized so far. For example, the well-known catalytic conversion of ketones to alcohols 

in the Meerwin-Ponndorf-Oppenauer-Verley reduction is now known to take place [46, 

47] non-catalytically in supercritical isopropanol (at 300
o
C). From mechanistic 

investigation [46] of this reaction a six-membered intermediate of this reaction features a 

O
…

H
…

O linkage (see scheme 1) which may be presumed to have the same features as an 

intramolecular LBHB. So would the C
…

H-C linkage. 
. 
6. Other AHB Hydrogen Bond Complexes. 

 
Fig 9. Histograms of RA---B (dA---B(obs)/dA---B(cal) from eqns 11-15 with N = 4 and K = 1) 

for all nominally A
…

H-B hydrogen bond complexes except O
…

H-N
 

and O
…

H-O 

hydrogen bond complexes. Hatched regions correspond to the historgrams in nominally 

N
…

H-O, Cl
…

H-O and Cl
…

H-N hydrogen bond complexes. 

 

We have shown in Fig 9 the histograms of the A
…

B distances as the ratio RA---B (as in fig 

3) in the nominally A
…

H-B hydrogen bond complexes other than the O
…

H-N
 
and O

…
H-O 

hydrogen bond complexes. The hydrogen bonded complexes other than O
…

H-N and 

O
…

H-O which have RA---B close to 1 (with predominantly “ n-polar” character) are 

mainly the nominally N
…

H-O  Cl
…

H-O and Cl
…

H-N hydrogen bonds shown by hatched 

boxes in Fig 8). Among the A
…

B distances with RA---B < 1 are N
…

O (1 out of 8), Cl
…

O (5 

out of 21), Cl
…

H-N (3 out of 61), Cl---C (0 out of 23), C
…

O (0 out of 45), C
…

N (1 out of 

44), C
…

C (0 out of 28). Thus the A elements which are not N or O (fluorine has not been 

counted as there are not enough examples) usually have RA---B > 1 and show a maximum 

in the distribution at values close to 1.125 (N = 4, K = 1.125 = Kneutral). We have shown 

the histogram for RC…C in the main part of fig 6. 



 

It is seen in Fig 9 that RA---B is peaked around RA---B = 1.125 and R ~ 1.17. The former 

would correspond to “neutral” or vdW distances calculated from eqns 11-15 with K = 

1.125. The hydrogen bond complexes with A
…

H distances considerably less than the “n-

polar” size of A and H atoms (CR0
-
(A) + 2aH) but with A

…
H-B contact distances which 

give RA---B considerably greater than 1.125 may not be considered to  be true hydrogen 

bonds.   They usually occur as the weaker hydrogen bonds when there are many 

“acceptor” A atoms hydrogen-bonded with the same hydrogen as in the bi-furcated or 

trifurcated hydrogen bonds (see scheme II of [23/12’]). Because of the many acceptor A 

atoms, the coordination number, N, of the hydrogen atom increases. An increase in N 

leads to a shortening of the distances as indicated by eqns 11-16.   

 

7. Electronegativity of A and B atoms. 

 

 The above analysis indicates that “n-polar” (K = 1 in eqn 14) hydrogen bonds with RA---B 

(dA---B(ob)/dA---B(cal)  < 1 (N = 4, K = 1 in eqn 14) are likely only when B = O or N. When 

A = N or O, RA—B > 1 especially when B ≠ N or O.  In this case the observed distances 

correspond mainly to calculated “neutral” ( K = 1.125) values indicating contacts similar 

to van der Waals complexes.  

 

This change from “ionic” to “neutral” distances on interchange of A and B atoms for (B = 

O and N) is consistent with our model for interatomic distances (sec 2.2). For example, in 

calculating the H-B bond distance, the size CR0
+
 for the B atom is required (eqn 2, rnZ

c 
(O 

or N) > rnZ
c
(H) = 0, Table 1). The size CR0

+
 is negative for oxygen (and fluorine) and 

close to 0 for nitrogen. Even in the case of nitrogen the size CR0
+
(N) is negative (~ - 6 

pm) when we use the empirical size, rG(N) = 0.26 a.u. and the relationship CR0
-
 = 2.25rG 

– 37 (in pm). The nucleus of an atom with a negative value of CR
+
 is likely to be exposed 

to the valence electron of another atom [48]. The A atom in a Y’-A linkage of another 

molecule in a Y’-A
…

H-B hydrogen bond complex is on the other hand associated with a 

negative charge (rnZ
c
(Y’) > rnZ

c
(A)). A negative charge and hence the size CR0

-
(A) is to 

be associated with the A atom in the Y’-A linkage. There is thus a complementary size-

charge synergy in CR0
-
(A) and CR0

+
(B) when B = O, F and N in Y’-A

…
H-B linkages. 

This could be the fundamental basis for the “n-polar” (K = 1) description for describing 

most A
…

B distances when B = F, O, and N. Such a condition has been, of course, 

expressed in the classic requirement that A be the more electronegative element in early 

descriptions [see 2/1, 23/12] of hydrogen bonding.    

 

We have shown in Fig 10 a plot of the normalized A
…

B distance, RA---B (as in Fig 9), 

versus the normalized A
…

H distance RA---H (= dA---H(obs)/dA---H(cal)) for O
…

H-C 

hydrogen bond complexes and C
…

H-O hydrogen bond complexes. The calculated A
…

H 

distance, dA---H,  is the sum of the “n-polar” sizes of the A and H atoms (= CR0
-
(A) + 2aH). 

It is immediately apparent from Fig 10 that the C
…

O contact distances in C
…

H-O 

hydrogen bond complexes have little polar character being described mainly by K ≥ 

1.125. The O
…

C contact distances in O
…

H-C hydrogen bond complexes, on the other 

hand, have more “n-polar” character. It is seen from Fig 10 that, RA---B becomes greater 

than 1.125 (signifying “neutral” A---B contacts) roughly when RA---H  > 1.0 or when the 



 
Fig 10. Plots of RA---B (see legend of Fig 8) versus RA---H (= dA---H(obs)/(2.30rnZ

c
(A) + 

4aH) for C
…

H-O (circles) and O
…

H-C (stars) hydrogen bond complexes. 

 

A
…

H contact distance is not completely described by “n-polar” character (for N = 4). One 

may thus characterize the C
…

H-O hydrogen bond complexes as weak and characterized 

by vdW interactions while the O
…

H-C hydrogen bond complexes have more “n-polar’ 

character. We have come to this conclusion not from “distance fall-off” characteristics 

[25, 49] but simply from expected 1,3-distances using the molecular tensegrity model. 

The shortest O
…

C contact (~ 299 pm) is close to ~ 293 pm which is the sum of “n-polar” 

sizes of C and O in the complexes encountered in this study. It involves the C5-H group 

in the imidazole ring and the oxygen of the carbonyl group of L-histidine methyl ester 

hydrochloride [50]. 

 

8. Systematic Changes in A
…

H and H-B Distances in A
…

H-B Hydrogen Bond 

Complexes.  

 

Although the 1,3- A
…

B distance in A
…

H-B hydrogen bond complexes are amenable to 

analysis in the molecular tensegrity model using eqn 14, for example, it may be necessary 

to understand the way the A
…

H and H-B distances comply with changes dictated by the 

tensegrity of the A
…

H-B complex. After all, knowing the disposition of the hydrogen 

atoms would seem to be most necessary in allocating the nature of biochemical reactivity 



to the hydrogen bond complex. We expect first of all a fairly linear relationship between 

the A
…

B distance, dA---B, and the A
…

H distance. dA---H. We find that the best linear  

 
Fig 11. Plots of dA---B versus (dA---H)

AB
 which is the component of dA---H along the A---B 

direction. circles: O
…

H-O complexes; squares: O---H-N complexes; + sign: other A
…

H-B 

complexes. Straight line is meant as a guide to the eye for unit slope. 

 

relationship is observed (fig 11) between dA---B and the component, dA---H
AB

 (= 

cos(∠HAB)dA---H) of dA---H  in the A
…

B direction instead of the linear fit between dA---B and 

dA---H. The best linear fit is given by (R > 0.93, SD = 12 pm) 

dA---B = 0.94dA---H
AB

 + 98 (in pm)                                                                      (20a) 

while the best fit with unit slope is given by 

dA---B = dA---H
AB

 + 85 (in pm)    (R > 0.95, SD =  10 pm)                                     (20b) 

         ~ dA---H
AB

  + 4aH/5                                                                                       (20c) 

A free linear fit between dA---B and dA---H (R > 0.93, SD = 12 pm) gives 

dA---B = 0.90dA---H
AB

 + 105 (in pm)                                                                      (21a) 

         ~ 0.90dA---H
AB

 + 2aH                                                                                   (21b) 

The dependence of the intercept on the Bohr radius, aH, of the hydrogen atom in eqns 20c 

and 21b is suggestive. The slope of unity in eqn 20b and the intercept of 2aH in eqn 21b 

are perhaps more amenable to a facile interpretation.  The relationships in eqns 20 and 21 

highlight the synergistic behavior expected for the geometry of the A
…

H-B complexes. 

These fits are also obtained (with the same slope and intercept) for the plots of dA---B 



versus dA---H  except for lower R factor (R > 0.93) and higher standard deviation (SD = 12 

pm).  

 

 
Fig 12. Plots of RA---H

nor
 (= RA---H/RH-B) vs RH-B = dH-B/(2.144rnZ

c
(B) + 4aH/3) and RA---H = 

dA---H/ (2.3rnZ
c
(A) + 4aH).  Circles with plus sign: O

…
H-O and O

…
H-N complexes with 

polar hydrogen bonds; open circles: others. Lines show best fit to an exponential decay of 

RA---H
nor

. Solid line: RA---H
nor

 = 0.42(±0.08) + 6.03(±1.44)exp(-RH-B/0.342(± 0.06); 

Dashed line: RA---H
nor

 = 0.33(±0.29) + 4.14(±1.15)exp(-RH-B/0.524(± 0.20). 

 

One of the more well studied correlations in interatomic distances of A involves in A
…

H-

B hydrogen bond complexes the lengthening of the H-B bond distance as the A
…

H 

distance is shortened. In neutron diffraction studies [23] of O
…

H-O hydrogen bond 

complexes, for example, the O-H bond continuously elongates with decreasing O
…

H-O 

distance until a symmetric O
…

H
…

O geometry is reached at an O
…

O distance of ~ 240 pm 

which is close to that calculated (see fig 8). The normalized A
…

H distance, RA---H (= dA---

H/ (2.3rnZ
c
(A) + 4aH)) seems to decay exponentially with the normalized H-B distance, 

RH-B (= dH-B/(2.144rnZ
c
(B) + 4aH/3). Thus, in the case of O

…
H-O data [23] the best fit is 

obtained with  

RO---H = 0.45 + 230exp(-RH-O/0.139)                                                                 (22a) 

While for N
…

H-O data the best fit is obtained with 



RN---H = 0.43 + 75exp(-RH-O/0.18).                                                                    (22b) 

 

The corresponding normalized distances obtained from X-ray studies do not show 

straightaway a clear correlation. There does seem to be an exponential decay of the 

normalized value, RA---H
nor

 (= RA---H/RH-B) of the A
…

H distance with the normalized H-B 

distance, RH-B, obtained from X-ray diffraction analyses roughly in the manner (Fig 12) 

RA---H
nor

 = K(Ao + Bo(-RH-B/KCo)                                                                    (23) 

where Ao ~ 0.3, Bo ~ 4.2 and Co ~ 0.45 and K = 1 for O
…

H-O and O
…

H-N for hydrogen 

bond complexes and K = 1.125 for the others. The parameters obtained from a best fit to 

an exponential decay are given in the legend of Fig 12 above along with the actual nature 

of the fit. As mentioned in the introduction, the X-ray diffraction results are necessarily 

different from neutron diffraction data and do not measure the same quantities. As such 

there is no justification for requiring universal parameters for Ao, Bo or Co in eqn 23. The 

possible introduction of dual values of K in eqn 23 for “polar” or “neutral” hydrogen 

bond complexes is potentially satisfying. Apparently more experiments are required. 

 

An important feature that emerges in Figs 11 is the nearly linear dependence of dA---B on 

dA---H (or RA---B on RA---H) which continues even when dA---H of Fig 11 is greater than the 

sum of the “n-polar” sizes of the A and H atoms. This would indicate that there is a 

fundamental and universal aspect of the way the hydrogen atom of the donor H-B linkage 

interacts with the so-called acceptor A atom in the A
…

H-B complex. The nature of the 

changes in Figs 11 and 12 indicate that although dA---B is directly related to dA---H, the 

extent of changes in dA--H is dependent on the ability of the bonded H-B distance to 

accommodate such changes. This inter-dependence of dA---B, dH-B and dA---H seems to 

constitute an integral part of the principles of molecular tensegrity and the way the whole 

defines the parts. It may be related in the way the proton is displaced from the centre of 

the hydrogen atom in the H-B linkage as in the atomic displacement model of Latimer 

[15] when the spherical atom approximation is not valid. In this case, the X-ray and 

neutron studies show complementary aspects of the structure of the A
…

H-B hydrogen 

bond complexes.  

 

6. Conclusions 

 

This article is an attempt to obtain quantitative information on the nature of interatomic 

separations in A
…

H-B hydrogen bond complexes as a function of the “polar” nature of 

the contacts with the hydrogen atom, sharing of the hydrogen atom between the A and B 

atoms as well as the influence of increasing coordination number, N, of the hydrogen 

atom. There is no dependence on DFT- or wave-function-based methodologies in this 

approach as we do not require minimizing energies to obtain a stable state of the 

molecule. Instead we approach the problem by applying [17-19] molecular tensegrity 

principles to molecules in a stationary state when the µ = 0 condition is expected to hold 

[48]. Because of this it is sufficient to obtain atomic sizes that are consistent with this 

condition. The interatomic A
…

B distance is obtained in this model without requiring an a 

priori knowledge of the A
…

H and H-B distance.  This conclusion is consistent in a way 

with the calculations of del Bene and Elguero [14] who find the two-bond NMR spin-spin 

coupling constants to be a monotonic function of the A
…

B distance while the one-bond 



reduced NMR spin-spin coupling involving the hydrogen atom is a more complex 

function of the A
…

H or H-B distances. Our model would help in interpreting the 

experimental A
…

B distance in terms of the polarity of the contacts (value of K in eqn 15), 

extent of sharing of the hydrogen atom (value of p in eqn 16c) in bonding between A and 

B atoms as well as the number of contacts with contact distances less than that expected 

from “neutral” (or vdW).  

 

The µ = 0 condition is not uniquely defined by a fixed geometry or a unique set of atomic 

coordinates for an X-M-X’ linkage in general or for A
…

H-B linkages in hydrogen bond 

complexes. The µ = 0 condition is, however, expected for various different geometries in 

different environments. These geometries could be a function of a unique atom-specific 

size, rnZ
c
 (Table 1) which may then vary for different kinds of bonding and environment. 

Once a given stationary state is reached, the final geometry does not depend on the way 

(the mechanics) this geometry is reached. Instead, it depends on the constraints on the 

various interatomic distances. The key spatial parameter in this case is the atomic size 

that is obtained from the µ = 0 condition. For an X-M-Y linkage, these constraints depend 

on a tensegrity factor, t
00±

, that is a measure of the matching of ideal bonded M-X (or M-

Y) and 1,3- non-bonded X
…

Y “charge-transfer” distances for a give X-M-Y linkage. We 

have applied this model to more than 1000 A
…

H-B hydrogen bond complexes found in 

compounds of biologically important α-amino acids chosen at random from the literature 

in the last five years mainly. It turns out that the A
…

H distances are less than the sum of 

their “neutral” (van der Waals) sizes with K = 1.125 in eqn 10b. 

 

The tensegrity factor is a simple function of the atomic sizes of the constituent atoms. 

Limiting values t
00±

lim→N are obtained for different values of coordination number, N (= 4 

or 6 in the present study). The calculated X
…

Y distance is then a simple function of the 

ration t
00±

/t
00±

lim→N for a given N and decreases with increasing N. The calculated distance 

is also a function of “n-polar” (ionic) or “neutral” (vdW) character of the X
…

Y contacts. 

We assume that the ideal non-bonded A
…

H distance (sec 2) is the sum of charge-transfer 

sizes, CR0
-
, of A and H atoms and that the ideal bonded A-H or H-B distance is, 

respectively, the sum of the charge-transfer bonded distance, dAH
00±

, of H and A atoms 

and dBH
00±

, of H and B atoms. The tensegrity factor for such hydrogen-bonded complexes 

is then defined (sec 3 eqns 13 and 14) and the expression for the A
…

B distance, dA---B, is 

obtained (eqn 15) from the sizes KCR0
-
(A, B) of the A and B atoms with K = 1 

describing “n-polar” (or ionic) sizes and K = 1.125 describing “neutral” (or what may be 

called vdW) sizes [21]. The possible A
…

B distances are tabulated in Table 2. The 

comparisons of calculated distances with experimental distances are expressed as 

histograms of their ratios, RA---B, in various figures (Figs 4 and 6).  

 

The O
…

H-O and O
…

H-N complexes have histograms of A
…

B distances that have their 

maximum corresponding to “n-polar” (K = 1) sizes for N = 4, while others have the 

maximum of their histograms close to the longer “neutral” (K = 1.125) sizes. We discuss 

the significance of low-barrier hydrogen bond complexes (LBHBs) and short hydrogen 

bond distances in terms of our model in section. The short A
…

B distances similar to those 

found in LBHBs may be described quantitatively in terms of hydrogen atom sharing 

between the two oxygen atoms. It is shortest (~ 250 pm, Fig 8) when the hydrogen atom 



is equally shared between the oxygen atoms. O
…

O distances of nearly 240 pm in O
…

H-O 

complexes would correspond to that calculated from eqn 15 when N = 6 for one of the 

O
…

H linkages (see fig 5 and fig 8).  

 

The role of electronegativity differences between A and B atoms are discussed in detail in 

sec 7, especially in the context of charge-transfer models for interatomic distances given 

in sec 3. This is discussed especially in the context of interchange of A and B atoms, as 

in, say, O
…

H-C and C
…

H-O complexes (Fig 10).   The inter-dependence (Figs 11 and 12) 

of the A
…

B distance with the A
…

H distance and the A
…

H distance with H-B distance, is 

discussed (sec 8) in terms of constraints that arise the hydrogen bond complexes are 

treated as tensegrity structures (Fig 7 and 8).  

 

7. Appendix 

 

This section has been included for the purpose of giving a tentative model for the 

formulae for interatomic distances as discussed in section 2. As such this model does not 

require a quantum theoretical approach. It simply assumes the existence of a spin (treated 

as a classical arrow or needle) and the way the total spin is conserved when two atoms 

are in contact. This condition for conservation of spin gives a geometrical factor from 

which the interatomic distances are obtained. The concepts introduced are new and will 

be treated in full detail elsewhere. It may suffice for the purpose of this communication in 

which we use the main conclusions. Because of this we have added this appendix.  

 

The atom-bond transition (eqn A1) involves a quantum phase transition in which there is 

a two-doublet → singlet transition with a forbidden change of spin, characteristic of the 

spin-forbidden transition of biradicals during an inter-system crossover [51]. Thus, we 

may have 

HA• + HB • ⇔ HAe
o
(↑) + HBe

o
(↓)  (at instant of bond formation)                          (A1a) 

HAe
o
(↑) + HBe

o
(↓)  + (e

-
h

+
) ⇔ HA[•(h

+
)] + HB[•(e

-
)] ≡  HA[(e

o
h

+
)] + HB[(e

o
e)

-
 ]   

                                             ⇔ HB[•(h
+
)] + HA[•(e

-
)] ≡  HB[(e

o
h

+
)] + HA[(e

o
e)

-
 ]  (A1b)  

The physical picture (eqns A4) describing such a transition, involves charge transfer from 

one doublet (S  = ½) state to another to form a pair of opposite and spinless charges (eqn 

A1a). Such states may be formed on the absorption of the interaction energy represented 

by a virtual photon or electron-hole pair (e
-
h

+
) (eqn A1b). This leads to the formation of 

charge-transfer, spin-less, precursor quasiparticle states H(e
o
e

-
) and H(e

o
h

+
) that exist 

together only in the context of bonding [48, 52]. Like other quasiparticles in condensed 

matter physics [53, 54] these particles survive only in the context of its existence of a 

chemical bond and disappear completely when the atoms are taken apart. This condition 

resembles a “mystical” [1] text-book definition [55] of the hydrogen bond which states: 

‘Because the bonding depends on orbital overlap, the H-bond is virtually a contact-like 

interaction that is turned on when XH touches Y and is zero as soon as the contact is 

broken’. 

 

In condensed matter physics the quasiparticle usually is a low-energy collective 

excitation of a large number of particles (> 1) that emerges from strong interactions to 

behave as if they are non-interacting. This non-interacting condition is consistent with a 



free-atom-like µ = 0 condition [48]. In the case of the formation of a chemical bond, the 

quasiparticle description only requires that the µ = 0 condition is present even if only two 

particles are involved.  

 

Much of this physical picture for the formation of a chemical bond may resemble the 

adiabatic winding argument proposed for the formation of charged solitons in 

polyacetylene [54, 56]. Such a crossover from non-interacting doublet “neutral” electrons 

to singlet charged states during the simplest chemical bond formation of the hydrogen 

molecule implies a transition across a phase boundary into a distinctly different state of 

matter and “in the process doing some great violence to the ground state and low-lying 

excitations” [54]. Thus, in describing the bonded state one requires to input additional 

parameters that take into account this phase transition specifically. Treatment of diatomic 

systems by molecular orbitals or other methods that use atomic orbitals or even atomic 

core sizes, rcore, may not satisfy this requirement. The classical chemists’ “ball” and 

“stick” model (“hub” and “axle” in our nomenclature) specifically takes this into account 

since it is the “stick” (“axle”) that is required by the bond-forming interaction that brings 

about the “phase transition”. The H-H bond distance (“axle” distance), dH-H, is obtained 

[48] as 

dH-H = 74 pm = aH
eh

 + aH
ee

 = εeff(4aH/3) ≡ [DH
-
 + DH

+
]  = 

 εeff(2aH – 2aH/3)           (A2) 

when εeff = 1.05. For εeff = 1 we have D1
+
 = 2aH/3 and  D1

-
 = 2aH and dH-H(εeff = 1) = 

4aH/3 ≈ 70.6 pm. 

 

The “hub” sizes of eqns 3 are determined by the atom-specific size, rnZ
c
, and the 

coefficients C
±
 when FS  = 1. We provide below purely geometrical arguments to show 

that C1
+
 = π2/3

 ~ 2.144 and C1
-
 = π4/3

/2 ~ 2.300 as used in eqn 3. The values of the 

coefficient C1
±
 have been related [48] to Mott’s [57, 58] use of Thomas Fermi screening 

to obtain the critical concentration, nc, at which a composition-controlled insulator-metal 

transition takes place in doped semiconductors, as an universal function of the Bohr 

radius, aH*, associated with the dopant . The bonding pair of electrons may be considered 

to be characterized as being itinerant within the bond (“axle”) dimension. The atom-bond 

transition may then be considered as a transition from a bound atomic state to an itinerant 

bond state as in an insulator metal transition at the critical concentration, nc  given by 

nc1
/3

 ≈ 0.26aH*. This implies that the volume, Vc, occupied by the dopant at the critical 

concentration, is given by  

Vc  ≈ 0.074(aH
*
)

3
 ≈ (0.74/π2

)(aH*)
3
                                                                         (A3) 

which is nearly one-tenth the close-packed fraction. If an effective size, aeff , is defined 

such that (4π/3)aeff
3 

is the close-packed volume at the concentration nc one obtains aeff = 

(aH*π2/3
) ≈ 2.14aH

*
 .  

 

Ganguly [59] has discussed the 1/π2
 term in eqn A3 as a geometrical factor arising from a 

reduced probability of charge transfer with conservation of spin at the boundary of an 

insulator-metal transition (IMT).  This would be a “spin representation” of the Thomas-

Fermi screening and arises from a constraint on the way the spins on two sites require to 

be oriented with respect to each other before a charge is formed.  

 



In a chemical bond between M and X atoms, the bonding valence electron of each atom 

may be treated as “neutral” spin ½ particle, •. The spins on these atoms require to be 

annihilated for spin-less charge to be created 

                                       ↑• + ↓•          ⇔         � +
 + [↑••↓]

-
                                (A4) 

                                      spin (S = 0)                  charge (S = 0) 

Ganguly [59] has used the classical Buffon Needle problem [60] to show that probability, 

Pi, for charge-transfer (left to right of eqn A4) with conservation of spin is simply given 

by Pi = 1/π2
.  If one takes the view that there is always a dynamic exchange of electrons 

in a chemical bond, one would require the probability of spin conservation in such 

exchange processes to be unity. Every such exchange requires conservation of spin. If the 

probability of conservation of spin is 1/π2
, the volume of the “hub” has to be increased by 

π2
 or the size of the “hub” to be increased by π2/3

 ~ 2.144. Just as the Thomas-Fermi 

screening length is the length within which the Coulomb potential is (exponentially) 

damped, one would require the size of the atom to be scaled by π2/3
rnZ

c
. The “hub” size 

π2/3
rnZ

c
, may then be treated as one in which the spin polarization in an atom due to the 

spin polarization of an external bonding valence electron is damped. For this reason we 

take 

C0
+
 = π2/3

 ~ 2.144                                                                                                 (A5) 

The value of CP = C0
+
 = π2/3

 is thus related to the probability of such spin-pairing as the 

first step before charge–transfer.  

 

The probability of conservation of spin when two doublets are converted to charged 

singlets (left to right in eqn A4) is more than converting charged singlets to neutral 

doublets (right to left of eqn A4). This is always the case if there is extra stability of the 

right-hand side of eqn A4 due to the interaction between opposite charges. The vital 

distinction is that the forward (charge-creating LHS to RHS of eqn A4) direction involves 

the spin pairing of single-electron states. In the case of the charge annihilation (from RHS 

to LHS in eqn A4) of spin-less charged states [↑••↓]
-
, a pair of electrons is involved. The 

value of C1
- 

is then related to the probability of spin-conservation when the pair of 

electrons in singlet charged state (RHS of eqn A4) is converted to the spin-paired doublet 

states (LHS of eqn A4). We simply assume that the probability of spin conservation when 

spin-correlation in the electron pair (eiej) is imposed, is 2[{(p
i
//

↑
)(p

j
//

↓
)}×{(p

i
//

↓
)(p

j
//

↑
)}] = 

2/π4
 where the factor 2 arises from the degeneracy of the two spin configurations of the 

electron pairs. The value of C0
-
 is then given by  

C0
-
 = (C0

+
)

2
/2 = (π2/3

)
2
/2 ~ 2.300                                                                         (A5).  

The actual implication of C0
-
 > C0

+
 is that the probability of breaking the bond is less than 

that of making one, and which, therefore, marks the atom-bond transition.  

 

From eqns A4 and A5 we obtain the theoretical charge-transfer distance, dMX
±
 as that 

given by eqn 3. It is for this reason that we consider eqn A3 to be the “ideal” value for the 

condition that εeff = 1 in eqn 1. The value of K = 1.125 for vdW sizes has been obtained 

[10] from the empirical fit between interatomic separation in rare-gas (RG = Ne, A, Kr, 

Xe) crystals and 2CR
-
(RG). Following arguments similar to those given above one may 

expect from the probability of charge exchange with spin conservation between two 

negatively charged states that rvdW ~ {(C1
-
)

2
/2}CR

-
 or ~ 1.15CR

-
 or KvdW = 1.15.   
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Table 1. Atomic Sizes for some atoms relevant for this work. 

 

Atom     rnZ
c
 (a.u.)  CR0

=
 (pm) CR0

+
(pm)    Atom        rnZ

c
 (a.u.)   CR0

=
 (pm)    CR0

+
(pm) 

 

H   0           105.6         -35.3         P               0.584          176.6             30.9 

B   0.449           160             15.6         S               0.55            172.5             27.1 

C   0.366           150.1            6.2         Cl   0.527          169.7             24.5 

N   0.316           144               0.5         Se   0.648          184.4             38.2 

O   0.282           140             -3.3         Br   0.625          181.6             35.6 

F   0.256           136.7          -6.3         I               0.74            195.6             48.6 

    

 

 



 

Table 2. Values of A
...
B distances (in pm) in A

…
H-B hydrogen bond complexes 

calculated from eqns 1-8 using various values of K and N and rnZ
c
 from Table 1. 

 

 

                                 A
…

B                             dA---B (cal) (pm) 

 

                                                  N = 4 (A
…

H-B)    N = 6(A
…

H-B)    A
…

H
…

B 

                                                                                                           K = 1 

                                                   K = 1        KvdW    K = 1  KvdW       N = 4     

 

                                F---F    281        315        231      259          250  

 O---F         283 318  233  262      253 

 N---F         285 321  235  264      257 

 C---F         289 325  238  268      262 

 O---O         286 321  236  266      256  

 N---O         288 324  238  268      259 

 C---O         291 328  241  271      265 

 Cl---O         305 343  250  282      286 

 S---O         307 345  252  283      289 

                                P---O    310        349       254      285          295 

                                Br---O    315        354       256      288          301 

 F---N         288 324  239  269      257 

 O---N         289 326  240  271      259 

 N---N         292 328  242  272      263 

 C---N         295 332  245  276      269 

 Cl---N         308 347  255  287      289 

 S---N         311 350  256  288      293 

 Br---N         314 353  258  290      304 

 P---N         319 358  261  293      299 

 O---C         296 333  247  278      265 

 N---C         298 335  249  280      269 

 C---C         301 339  252  284      274 

 Cl---C         314 354  262  294      295 

 S---C         317 356  263  296      298 

 S---S         319 359  265  300      322 

 Se---C         327 368  269  302      314 

   

 

 


