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The Fuller notion1 of tensegrity structures has structural 
elements that are held together by compressive and tensile 
elements that balance each other. Such tensegrity are expected to 
hold for all length scales, as a general principle. Fuller-Snelson 
tensegrity structures using (incompressible) struts and (tensile) 
cables describe well the qualitative features of cell and tissue 
architecture in complex biological systems2. The “molecular 
tensegrity” that determines, say, the mechanical stability of the 
structure of isolated gas-phase MXn molecules has been elusive. 
A simplifying feature that we take advantage of is that the energy-
minimized, density optimized stationary state is consistent with a 
free-atom-like µ = 0 condition3, 4 such that atoms in molecules 
may be treated independent of each other. Simple mechanical 
relationships between atomic sizes contribute to interatomic 
distances that eventually determine the molecular tensegrity 
structure without requiring to know the (quantum) mechanics of 
the way the µ = 0 state is reached from a µ ≠ 0 state.  

 
For an isolated MXn molecule, the mutual influences of 1,2- 

bonded (attractive) M-X distance, dM-X, and 1,3- non-bonded 
(repulsive) X- - -X distances, dX-X, is expressed (eqn 3) as a 
tensegrity factor (similar to the tolerance factor in solids7, 8) that 
forms the quantitative basis for molecular tensegrity. 1,2- 
interatomic distance, dMX

n0, have been expressed as3, 5 an universal 
function of “core” (small compared to interatomic distances) 
empirical5 atomic sizes, rG as  

dMX
n0  = CR0

+(M)/FS(M) + CR0
-(X) 

             = [C0
+rG(M)+ D0

+]/FS(M) + C0
 –rG

 (X)  +D0
-                   (1) 

with CR0
± = C±rG + D0

±,  and  C0
+ = 2.24, C0 

- = 2.49, D0 
- = 111 

pm and D0
+ = - 37 pm. The term9 FS(M) = 1 (nv = 0) for all M 

except for transition metal MX3 (nv = 1) and MX4 compounds (nv 
= 2). The superscript, ±, refers to charge-transfer states CR0

+ and 
CR0

- in eqn 1. The size CR0
-(X) is close to the ionic radii in solids5 

and is different from the van der Waals’ radius10, rVDW ≠ CR0
-(X). 

The non-bonded distance, dXX
00 is expected to be  

dXX
00 = 2KCR0

-(X)                                                                (2) 
Unless otherwise mentioned, we take K = 1 hereafter. Eqns 1 and 
2 are required to define an ideal “tensegrity” factor10, tn0

±, as 
tn0

± = dMX
n0/dXX

00                                                                  (3) 
 
We now express an experimental quantity FS(obs) as 

FS(obs) = dXX(obs)/dXX
00 ≡ dXX(obs)/2CR0

-(X)                     (4) 
A plot of FS(obs) vs tn0

±  (Figure 1) for all gas-phase MX2, MX3 
and MX4 compounds11, 12 (X = atom of insulating element) two 
nearly linear relationships of the type  
    FS(obs) = A – Btn0

±                                                               (5) 
are obtained (Fig 1) which we refer to as Type I and Type II. In 
general ,Type I MXn compounds have M = atom of s-block metal, 
(met(s) in Figure 1), or transition metal dihalides (TM(n = 2)), 
while Type II compounds have M as an atom of an insulating 
element (ins), p-block metal (met(p)) or transition metal MX3 or 

MX4 compounds (TM(n > 2)). The compounds BH2, AlH2, MH4 
(M = Si, Ge, Sn and Pb) and SeO3 are better described as type I 
compounds. From the ratios of the two slopes in Fig 1 we find  
FS(obs)(II)/FS(obs)(I) ~ 1.12 for the same tn0

±.  

 
Figure1. Plot of FS(obs) (eqn  4) vs the tolerance factor, tn0

± 
(eqn 3) for gas-phase MX2, MX3 and MX4 compounds. Dotted 
line: Type I compounds; FS(obs)= 1.66(0.04)t00

± – 1.12(0.5); R = -
0.96, SD = 0.03. Full line: Type II compounds, FS(obs) = 
1.87(0.02)t00

± – 1.25(0.4); R = -0.96, SD = 0.04.  
 
The linear relationships in Figure 1 may be understood from 

Fuller’s original description1 of tensegrity which considers 
“continuous, tensional behaviours” as in a stretched membrane of 
a filled balloon. The “critical proximities that show up physically” 
are “repellings” which keep the molecular network constituting 
the balloon membrane stretched outwardly in all directions. The 
geometrically simplifying Fuller feature of the balloon membrane 
is the notion of “paired oppositely accelerated molecules” 
caroming around in “most comfortable great circles”, three of 
which intersect to give vertices of two spherical octahedral, one 
octaehdron for each opposing direction. The linear relationships 
(eqn 5) in Figure 1 is understood from the geometrical limits of 
octahedral structures. 

 
We examine eqn 4 in terms of the ratio of atomic sizes, 

(CR0
+(M)/CR0

-(X). The ratio CRS
+(M)/CRS

-(X) = 0.414, 
geometrically represents the lower limit for stable octahedral 
coordination in ligand close-packed scenarios quite different from 
that envisaged by Gillespie et al13, 14. Writing eqn 3 as t00

±  ≡ 
0.5(CR0

+(M)/CR0
-(X) + 1) we require from eqn 5 FS(obs) = 1 

when t00
± = 1/1.414 = 0.707 as in the fit for type II compounds in 

Figure 1. Ideally, we prefer FS(obs) = (2 – 1.414t00
±) and obtain (κ 

= effective dielectric constant, see eqn 7) from eqns 2, 3 and 5 
dXX(calcd) = 2κKCR0

-(X)/(2 - 1.414t00
±)                           (6) 

as an “ab initio” quantity dependent only on “portable”15 core 
atomic size of M and X atoms (eqn 1). The best fits to plots of 



 

dXX(obs) vs dXX(calcd) (κ = 1 in eqn 6) in more than 160 gas-phase 
MX2, MX3 and MX4 compounds give (R > 0.99) dXX(obs) = 
1.19dXX(cal) –15.8(9.2) for type I compounds and dXX(obs) = 
1.04dXX(cal) –6.7 for Type II compounds. The improvement in the 
R factor of the fits as compared to that in Figure 1 attests to the 
goodness of the model (eqn 6), especially considering that the 
gas-phase distances are obtained at various conditions of 
measurement, temperature and pressure and without a substantial 
theoretical basis for the “core” atomic sizes.  

 The finite intercepts of the best fits using eqn 6 highlights the 
uncertainty in the way the effective dielectric constant, κ, of eqn 6 
varies with atomic size (as it should because of changes in 
polarizability with size). We have varied κ as κ = 1 + (LdMX

00)2 
such that the intercept of the best fit is zero. We find that L ~ 
0.001 (for dMX

00 in pm) is empirically required for all compounds 
We thus write 

dXX(calcd) = 2{1 + (0.001dMX
00)2}KCR0

-(X)/(2 - 1.414t00
±)  (7) 

The best fits to plots of dXX(obs) vs dXX(calcd) using eqn 7 then 
requires with K(Type I)/K(Type (II) ≈ 1.08 (Fig 2). The standard 
deviation is 8 pm for type II and 13 pm for type I which is 
comparable to calculated values11 employing latest theoretical 
methodologies 

 
Figure 2.  Plots of dXX(obs) vs dXX(calcd) using eqn 7 (except 

transition metal tetrahalides for which we take κ = 1). The best 
fits (R > 0.993) give dXX(obs) vs 1.07dXX(calcd) for type I 
compounds and dXX(obs) vs 0.99dXX(calcd) for type II compounds 

 
The size 2CR0

-(X) (K = 1 in eqn 2) is close to the negatively 
charged ionic radii of atoms in solids while the size 2*1.08*CR0

-

(X) (K = 1.08 in eqn 2) could be close to the so-called van der 
Waals’ radii10, rVDW. For example, the ratio of the Bondi radii10 of 
rVDW for C, N, O, F to the corresponding values of CR0

-(X) is 
close to 1.09. The nearest-neighbour interatomic separation of Ne, 
Ar, Kr and Xe in their crystals18 when given by 2*1.08*CR0

-(X) 
could require rG values of 0.27, 0.51, 0.61 and 0.74 (a. u.), 
respectively, which is close to that expected (e.g., from the 
Zunger-Cohen valence s-electron radii6 of 0.22, 0.46, 0.65 and 
0.75 (a. u.)). 

 
A point of importance is the relative insensitivity of non-

bonded X- - -X distances to the deviation (Fig 3) of bonded M-X 
distances from the calculated value of dMX

n0 (using eqn 1). This is 
consistent with early seminal observations of Bartell16, re-
emphasized by Gillespie and coworkers13, 14. The invariance of 
1,3- non-bonded distances may be regarded as struts and the more 
variable 1,2- distances as tensile elements in molecular tensegrity 
structures of gas-phase MXn compounds. Our methodology is 

applicable to terminal linkages in gas-phase dimers (such as those 
in M2X6 dimers, M = Al, Ga, X = halogen) or organic compounds 
but not to the bridged linkages (showing effects due to a transition 
to a condensed state). The main exceptions (not shown) are the 
linear compounds KrF2 and XeF2 (not shown) and the axial non-
bonded F- - -F distances in T-shaped molecules, BrF3 and ClF3. 
The understanding of non-bonded X---X distance using eqn 5 for 
these and other n > 4 MXn compounds requires more elaboration. 

 
Figure 3. Plots of dMX(obs) of gas-phase MXn compounds (n ≥ 4) 
(Refs 11, 12) versus dMX

n0 (calculated) usng eqn 1. 
 
In conclusion, we find that molecular tensegrity seems to be a 

powerful concept for molecular structure. Our methodology does 
not require prior knowledge of ionic character of M-X bond, nor 
the full weight of quantum chemical compliculations, given a core 
atomic size.  
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ABSTRACT This article describes a methodology for 
obtaining quantitatively the 1,3-non bonded distances in 
gas-phase MXn compounds (n ≤ 4) of nearly 160 inorganic 
compounds (including those of transition metal elements). 
The simple principles behind its methodology (involving only 
linear equations), its quantitative character, its 
transparency, its portability and its generality have not been 
noticed before. There is no dependence on the “ionic 
character” of the M-X bond, nor on complex calculations 
using molecular wave functions, once the atomic size is 
given. 


